ACTS
Experiment-independent tracking
Loading...
Searching...
No Matches
GNN Plugin

Detailed Description

Classes

class  ActsPlugins::BoostTrackBuilding
class  ActsPlugins::CudaTrackBuilding
struct  ActsPlugins::Device
 A simple device description struct. More...
class  ActsPlugins::EdgeClassificationBase
struct  ActsPlugins::ExecutionContext
 Capture the context of the execution. More...
class  ActsPlugins::GnnHook
class  ActsPlugins::GnnPipeline
struct  ActsPlugins::GnnTiming
class  ActsPlugins::GraphConstructionBase
class  ActsPlugins::GraphStoreHook
class  ActsPlugins::ModuleMapCuda
struct  ActsPlugins::NoEdgesError
 Error that is thrown if no edges are found. More...
class  ActsPlugins::OnnxEdgeClassifier
struct  ActsPlugins::PipelineTensors
 Struct that ties together the tensors used in the GNN pipeline. More...
class  ActsPlugins::Tensor< T >
 This is a very small, limited class that models a 2D tensor of arbitrary type. More...
class  ActsPlugins::TensorRTEdgeClassifier
class  ActsPlugins::TorchEdgeClassifier
class  ActsPlugins::TorchMetricLearning
class  ActsPlugins::TrackBuildingBase
class  ActsPlugins::TruthGraphMetricsHook

Functions

std::pair< Tensor< std::int64_t >, std::optional< Tensor< float > > > ActsPlugins::applyEdgeLimit (const Tensor< std::int64_t > &edgeIndex, const std::optional< Tensor< float > > &edgeFeatures, std::size_t maxEdges, std::optional< cudaStream_t > stream)
 Apply a limit on the number of edges consistently on edgeIndex and edgeFeatures.
std::pair< Tensor< float >, Tensor< std::int64_t > > ActsPlugins::applyScoreCut (const Tensor< float > &scores, const Tensor< std::int64_t > &edgeIndex, float cut, std::optional< cudaStream_t > stream={})
 Apply a score cut to the tensor and return a new tensor with the values that satisfy the cut.
std::ostream & ActsPlugins::operator<< (std::ostream &os, Device device)
 Stream operator for Device.
void ActsPlugins::sigmoid (Tensor< float > &tensor, std::optional< cudaStream_t > stream={})
 Element-wise sigmoid function for float cpu tensors.

Function Documentation

◆ applyEdgeLimit()

std::pair< Tensor< std::int64_t >, std::optional< Tensor< float > > > ActsPlugins::applyEdgeLimit ( const Tensor< std::int64_t > & edgeIndex,
const std::optional< Tensor< float > > & edgeFeatures,
std::size_t maxEdges,
std::optional< cudaStream_t > stream )

Apply a limit on the number of edges consistently on edgeIndex and edgeFeatures.

Parameters
edgeIndexThe edge index tensor
edgeFeaturesThe edge feature tensor
maxEdgesThe edge limit to apply
streamThe stream to use for operation in case of CUDA
Returns
Pair of limited edge index tensor and optional limited edge features tensor

◆ applyScoreCut()

std::pair< Tensor< float >, Tensor< std::int64_t > > ActsPlugins::applyScoreCut ( const Tensor< float > & scores,
const Tensor< std::int64_t > & edgeIndex,
float cut,
std::optional< cudaStream_t > stream = {} )

Apply a score cut to the tensor and return a new tensor with the values that satisfy the cut.

Parameters
scoresThe edge score tensor
edgeIndexThe edge index tensor
cutThe score cut value which edges to accept
streamThe stream to use for the operation in case of CUDA
Returns
Pair of filtered score and edge index tensors containing only edges above threshold

◆ operator<<()

std::ostream & ActsPlugins::operator<< ( std::ostream & os,
Device device )

Stream operator for Device.

Parameters
osOutput stream
deviceDevice to output
Returns
Reference to output stream

◆ sigmoid()

void ActsPlugins::sigmoid ( Tensor< float > & tensor,
std::optional< cudaStream_t > stream = {} )

Element-wise sigmoid function for float cpu tensors.

Parameters
tensorThe tensor to apply the sigmoid function to
streamThe stream to use for the operation in case of CUDA